Repository logo
Communities & Collections
All of Repository
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "EDEN AHMED"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • No Thumbnail Available
    Item
    AMHARIC EXTRACTIVE TEXT SUMMARIZATION USING AmRoBERTa –BiLSTM MODEL
    (Hawassa University, 2024-05) EDEN AHMED
    Extractive text summarization is a crucial task in natural language processing, allowing users to quickly grasp the main ideas of lengthy documents. The manual summarization process is often labor-intensive and time-consuming. As the volume of information in the Amharic language continues to grow, the need for effective summarization systems has become essential. While various summarization techniques have been developed for multiple languages, research specifically focused on Amharic remains limited. Most existing studies rely on traditional methods that often lack of contextual embeddings, which are crucial for understanding the meaning within the text. Additionally, current approaches often struggle to capture long-range dependencies among sentences and none of the existing studies have utilized hybrid deep models, which have demonstrated state of-the-art performance in summarization tasks for other languages. This study addresses the challenge of extractive text summarization for Amharic news articles by proposing a hybrid deep learning model that combines the contextual understanding of AmRoBERTa with the sequential processing capabilities of Bidirectional Long Short-Term Memory. A dataset of 1,200 Amharic news articles, covering a variety of topics, was collected. Each article was segmented into sentences and labeled by experts to indicate their relevance for summarization. Preprocessing was conducted, including normalization and tokenization using AmRoBERTa, to prepare the data for modeling. The proposed model was trained using various hyperparameter configurations and optimization techniques. Its effectiveness was evaluated using ROUGE metrics. The results demonstrate that our model achieved significant performance, with a ROUGE-1 score of 44.48, a ROUGE-2 score of 34.73, and a ROUGE-L score of 44.47.
Useful Links
  • Web Site
  • E-Learning
  • Library
  • SIS
  • Portal
Library Contact

Library Service Directorate

Phone: 0911728840

Email: library@hu.edu.et

Repository Links
  • Home
  • Browse Collections
  • Submit Research
  • Help & Support
Copyright © 2002-2025, Hawassa University.