Repository logo
Communities & Collections
All of Repository
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "YIDIDYA TSEGAYE ALEMU"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • No Thumbnail Available
    Item
    ASSESSMENT OF CLIMATE CHANGE IMPACT ON STREAM FLOW OF GIDABO SUBBASIN, RIFT VALLEY BASIN, ETHIOPI
    (Hawassa University, 2022-08-10) YIDIDYA TSEGAYE ALEMU
    Climate changes alter regional hydrologic conditions and result in a variety of impacts on water resource systems. Such hydrologic changes will affect almost every aspect of human well-being. The goal of this thesis is to assess the impact of climate change on the hydrology of Gidabo subbasin located in the Rift Valley basin of Ethiopia. The RCP scenarios of types 2.6, 4.5, and 8.5 were used for the climate projection from the CORDEX Africa domain from CMIP5. The RCM of RCA4 was used to generate future possible local meteorological variables in the study area. These data were used as input to the Soil and Water Assessment Tool (SWAT) model to simulate the corresponding future streamflow Variability in the Gidabo subbasin. SWAT-CUP, a program for calibration and uncertainty was utilized for uncertainty analysis. The three projected time periods for this study were the 2040s, 2060s, and 2090s. The time series generated by RCM of RCA4 driven by MIROC5 indicate a significant increasing trend in maximum and minimum temperature values and a decreasing trend in precipitation for all RCP emission scenarios in Measso station for all time periods. The hydrologic impact analysis made with the downscaled temperature and precipitation time series indicates variation in an increasing and decreasing trend for the three RCP scenarios at different periods respectively. The model output shows that there may be a mean annual, seasonal, and mean monthly decrease in stream flow volume for all RCP scenarios in the Projected time periods in the future. It also shows most of the projections are within the uncertainty bandwidth of 95PPU
Useful Links
  • Web Site
  • E-Learning
  • Library
  • SIS
  • Portal
Library Contact

Library Service Directorate

Phone: +251 46 212 2594

Email: library@hu.edu.et

Repository Links
  • Home
  • Browse Collections
  • Submit Research
  • Help & Support
Copyright © 2026, Hawassa University.