AMHARIC MULTI-HOP QUESTION ANSWERING IN HISTORICAL TEXTS: A DEEP LEARNING APPROACH

No Thumbnail Available

Date

2024-11

Journal Title

Journal ISSN

Volume Title

Publisher

Hawassa University

Abstract

In our daily lives, questioning is the most effective way to gain knowledge. However, manual extraction of answers is time-consuming and requires expertise in the field. As a result, implementing fully question answering could accelerate extraction times and reduce the requirement for human labour. Numerous studies have been done on question answering in full resource languages like English, and others using various recent techniques. However, unlike previous research, which concentrated exclusively on single hop question answering, this thesis proposes the concept of multi-hop question answering in Amharic. Until yet, no studies have investigated multi-hop question answering in the context of the Amharic language, which includes reasoning over numerous pieces of evidence or documents to generate an answer. Furthermore, there is no existing question answering data set to address these issues; therefore, this study used deep learning for the Amharic multi-hop question answering problem, a neural network method. To do this, we preprocess our dataset using tokenization, normalization, stop word removal, and, padding before feeding it to a deep learning model such as CNN, LSTM, and Bi-LSTM to create question type classification based on the given input. Because there is no multi-hop Question answering training dataset in Amharic, training data must be created manually, which is time-consuming and tedious. It is around 1500 questions and contexts associated with five classes. The class depicts as ((0) for factoid_date, (1) for factoid_person, (2) for factoid_location, and (3) for factoid_organization. Accuracy, precision, the F-measure, and the confusion matrix are performance metrics used to evaluate the model's overall efficiency when applied to the provided dataset. According to performance measurements, the maximum achievable accuracy rates for this study's LSTM, CNN, and Bi-LSTM were 96%, 96.38%, and 97.04%, respectively. The findings indicated that the suggested Bi LSTM outperformed the other two models in terms of Amharic multi-hop questions type classification.

Description

Keywords

Deep Learning

Citation

Collections

Endorsement

Review

Supplemented By

Referenced By